IAU XXVIII General Assembly 20-31 August, 2012 Beijing, China

Massive Stars with Infrared-Excess in the Young Supernova Remnant G54.1+0.3

Hyun-Jeong Kim¹, Bon-Chul Koo¹, and Dae-Sik Moon²

¹Seoul National University; ²University of Toronto

Massive Stars: Supernovae and Supernova Remnants

- Supernova explosions in galaxies
 - Sources of kinetic energy, heavy elements, and dust grains
 - Generate cosmic rays and hot gas phase, destroy dust grains, and trigger star formation.
 - Mostly core-collapse SNe with progenitor mass $\geq 8M_{\odot}$
- Supernova Remnants (in IR)
 - 20-30% of 274 Galactic SNRs in IR (Reach+2006; Goncalves+2011)
 - MIR/FIR emission mainly from thermal emission from dusts
 - In Infrared, shock processing of dust grains, dust formation in SNe and in progenitors, the environment of SN explosion..

• AKARI SNR Project (Koo et al.)

SNR G54.1+0.3

- Young, composite SNR @ 6-8 kpc
 - Crab-like SNR PWN (~ 3,000 yr)
 - SNR shell (Lang+2010; Bocchino+2010) cf. $R_b=12.6d_7$ pc; $n_0\sim0.1$ cm⁻³, t=3,000 yr, $M_{ei}=8$
- AKARI observations (Koo+2008)
 - Bright, partially complete IR loop in the SNR
 - Point-like sources with strong MIR excess distributed along the IR loop

> IR-excess stellar objects

AKARI 15 µm(G)

Spitzer 5.8/24 µm(B/R) +AKARI 15 µm(G)

hocked CSM/ISI

VLA 20cm (Kurtz)

0.00440

0.00112

0.00221

0.00330

IR-excess Stellar Objects in G54.1+0.3

- JHK color-color diagram
 - clustered around the positions of OB stars with Av = 6.9-9.2 mag
 - not much near-IR excess
- Spectral energy distributions (SEDs)
 - large mid-IR excess with a dip at 6-10μm

What is the origin of their IR-excess?

Origin of the IR-excess Stellar Objects (1)

YSOs whose formation was triggered by the progenitor of G54.1+0.3 (*Koo+2008*)

- YSOs without much CSM (e.g. Herbig A/Be stars)
- IR emission originates from remnants of massive star formation.

(D'Alessio et al. 2005)

Origin of the IR-excess Stellar Objects (2)

Early-type stars belonging to a cluster in which the SN exploded *(Temim* +2010)

- Spitzer IRS spectrum of the IR loop similar to the spectrum of freshly-formed dust in Cas A
- IR emission originates from the SN ejecta heated by the IRexcess stellar objects

NIR Spectroscopy of the IR-excess Stellar Objects

- TripleSpec on Palomar Hale 5-m telescope (August 2008)
 - 1-2.4 μ m (R \approx 2500); 1" x 30" slit
 - 7 out of 11 objects; S/N = 5-30
- Moderately strong H lines, weak He I lines, no He II line
 - Late O to early B stars (O8-B3) (Hanson+1996; 1998; 2005)

Spectral Type Classification

- Line ratio
- Direct comparison with spectral library
- Synthetic spectrum
- Theoretical NIR spectrum modeling
 - \rightarrow Temperature-sensitive Hydrogen lines.

Empirical relation bet. *EWs* and T_{eff} ?

Lenorzer et al. (2004)

Relation between *EW***s of hydrogen line & Temperature**

• Sp. Type from $EW_{BR11} - T_{eff}$: O9-B2 (±0.5-1 subclass)

Object	1	5	7	8	10	11
Sp. Type	B1	09	< B3.5	B1.5	B1.5	B1.5
	(B0.5-B1.5)	(O7.5-B0)	-	(B1-B2)	(B1-B3)	(B1-B2.5)
Teff (kK)	26 ± 2	33 ± 3	> 17	23 ± 2	22 ± 3	23 ± 4

Distance to IR-excess Stellar Objects & G54.1+0.3

- Sp. Type + SED $\rightarrow d = 6.0 \pm 0.4$ kpc; Av = 7.3 ± 0.1 mag
- Av \approx 8 mag from X-rays
- Other distance estimates
 - HI absorption : 5-10 kpc ($R_{\odot} = 8.5$ kpc)
 - Pulsar DM
 - $:9^{+1}_{-1.5}$ kpc

(Camilo+2002; Cordes-Lazio NE2001)

Modeling of Spectral Energy Distribution

- From SED of the IR-excess stellar objects,
 - → circumstellar dusts located at a distance from the stars
- Simple SED modeling of Object 1 (TRANSPHERE, Dullemond+2002)
 - blackbody of a B1V star (T=26,000 K; $L=17,000L_{\odot}$)
 - 1-d, spherically symmetric shell of a single dust (0.1 μm silicate; graphite)
 - power-law density distribution (p=0; -1)

- Position and intensity of a dip $\sim R_{in} \& \rho_{dust,R_{in}}$ - smaller R_{in} , / higher ρ , a dip at shorter λ
- Difference between different dusts

silicate	graphite		
a sharp dip ~ 7µm	smooth around the dip		
$R_{in} = 50-530 \text{ AU},$	$R_{in} \sim 2000$ of AU, similar		
~ density slope, p	in both slopes		

Models highly rely on dust properties (e.g. size, composition) and we need further observations in MIR (N-band).

e.g. 0.5 μ m silicate model (p=-1) : $R_{in} = 75 \text{ AU}$

Implications on Origin of IR-excess Stellar Objects

- 1. YSOs triggered by the progenitor of the SN : IR emission from the remnant of circumstellar material
 - Weaker MIR/lack of NIR excess than most of Herbig Ae/Be stars
 - \rightarrow large inner radius and large fraction of material already cleared out
 - R_{in} : < 50 (p=0); 530 (p=-1) AU for silicate; ~ 2000 AU for graphite
 - Disk dispersion mechanism: photoevaporation (Hollenbach+1994;2000)
 - rapid destruction of outer disk $(> r_g)$
 - destruction of inner disk by winds
 - late O-/early-B : > 150 AU will be
 first destroyed in 10⁵-10⁶ yrs
 (Bik+2006)

> Rather uniformly distributed silicate or large dust grains?

2. Stellar cluster where the SN exploded : IR emission from newly-formed SN ejecta

Mass of the progenitor of G54.1+0.3

- IR-excess stellar objects : 10-17 $M_{\odot} \rightarrow > 17 M_{\odot}$
 - Ib/c? absence of $17-35M_{\odot}$ stars
 - IIL/b? lack of evidence showing circumstellar interactions (Chevalier 2005)

> The progenitor mass : 18-25 M_{\odot} , at the high end) of Type IIP

If a SN explodes in a cluster, we can use the cluster members to derive the progenitor mass.

Dust distribution around IR-excess stellar objects

- Radiation pressure \rightarrow dust avoidance zone, r_{av} (Artymowicz & Clampin 1997)
- Interaction between stellar winds and SN ejecta \rightarrow bow-shock structure, r_{bs}

 $r_{bs} \sim 1,300 \, {\rm AU}$

silicate: $r_{av}(0.1/0.01 \mu m) \sim 170/600 \text{ AU}$

graphite: $r_{av}(0.1/0.01 \mu m) \sim 290/1,350 \text{ AU}$

Dependent on dust property; larger dusts tend to exist close to the stars

Dust mass of the infrared loop from FIR (preliminary)

(Koo 2012)

Summary

• NIR spectroscopy of the IR-excess stellar objects embedded in the young, composite SNR G54.1+0.3 has shown that they are massive (O9-B2) stars.

 $- d = 6.0 \pm 0.4$ kpc; Av = 7.3 \pm 0.1 mag

- We have found a good correlation between observationally measured EWs of hydrogen lines and temperature in early-type stars. Confirmation using more lines and samples will be helpful in future study.
- Our NIR spectroscopy results and simple SED modeling give some implications on the two scenarios on the origin of the IR-excess stellar objects.

i) YSOs triggered by the progenitor: if we adopt a current disk dispersion mechanism, rather large dust grains would be located near the central stars.

ii) SN explosion in a stellar cluster: from the spectral types of the IR-excess stellar objects, the progenitor mass would be constrained as 18-25 M_{\odot} . Dusts distribution would be controlled by radiation pressure of the IR-excess stellar objects, and it also implies rather larger dust grains would be located close to the central stars.