

MASGOMAS Project: Two new obscured, massive and young Galactic clusters

Most work by S. Ramírez-Alegría (IAC, Tenerife, Spain)

With the collaboration of A. Marín-Franch (CEFCA, Teruel, Spain) F. Najarro (CAB-CSIC, Madrid, Spain)

Artemio Herrero (IAC, Tenerife, Spain) IAU GA Beijing, August 2012

Massive clusters

- Catalogues such as 2MASS, DENIS, UKIDSS or VVV have boosted the search for massive clusters in the MW
- However, we still expect a larger number of massive clusters (Hanson, 2008; Ivanov, 2010)

• And an even larger number of intermediate mass clusters

$$Q_{IR} = (J - H) - \frac{E_{J-H}}{E_{H-K_s}} (H - K_s) = (J - H) - 1.7(H - K_s)$$

- $(J-K_s) > 1.3$: Clear foreground stars.
- K_s: Threshold magnitude to allow over-density detection + LIRIS@WHT spectroscopic limit (Ks < 12.5, empirical).

MASGOMAS search

• The number of OB-candidates is compared with that of the surrounding control field.

SOLIDER - INGENI

(Ramírez-Alegría, Marín-Franch & Herrero, 2012, A&A 541, A75)

- RA=282.568°, dec=+0.352°
 l=33.11°, b=0.422°
- Once we have our candidate we use LIRIS@WHT (FoV: 4x4 arcmin²; 0.3⁻⁻¹ pix⁻¹
 - NIR photometry of the candidate and control field
 - Target selection (mask design)
 - Target MOS (and LS) spectroscopy

LIDEP - INGER

- Spectroscopic follow up for 28 stars with LIRIS; R~2500
 - OB-type candidates observed with MOS.
 - RSG candidates observed with LS.
 - Stars grouped by magnitude.
- Spectral clasification comparing with similar resolution near-IR spectral catalogues (Hanson et al, 1996, 1998; Meyer et al., 1998; Wallace & Hinkle, 1997)

•17 stars classified as O9-B1V, 4 as SGs (3 M SGs, 1 A2I), 1 AV, 6 RG

- OB-type candidates observed with MOS.
- RSG candidates observed with LS.
- Stars grouped by magnitude.
- Spectral clasification comparing with similar resolution near-IR spectral catalogues (Hanson et al, 1996, 1998; Meyer et al., 1998; Wallace & Hinkle, 1997)

SOLIDER - INGENI

•17 stars classified as O9-B1V, 4 as SGs (3 M SGs, 1 A2I), 1 AV, 6 RG

- 17 were classified as OB-type stars between O9V and B1V.
- 4 as supergiants (1 A2I, 3 MI).
- 1 as an A-type dwarf (foreground)
- 6 as late type giant stars (foreground)
- We have estimated individual distances and extinctions by comparison of observed and intrinsic colors and absolute magnitudes (Cox, 2000) using the spectral types we determined.
- Individual distances of massive stars are compatible with a single cluster distance of 3.53 ± 1.48 kpc.

ID	Spectral type	A_K [mag]	Distance [kpc]
1	B1 V	1.83	3.69
3	O9V	2.21	2.95
4	B0 V	1.74	4.50
5	09.5 V	1.95	3.14
6	B0 V	1.96	2.98
7	09.5 V	2.03	3.58
8	O9.5-B0 V	1.76	3.70
9	09.5 V	2.33	3.43
11	O9 V	1.95	3.43
12	O9 V	2.15	2.44
13	B0 V	2.29	4.15
15	B0 V	2.12	3.79
16	B0 V	1.90	3.51
17	B0 V	2.00	3.39
19	B0 V	1.84	2.90
20	B0 V	2.00	4.23
21	09.5 V	1.87	3.32
s01	A2I	1.89	3.58
s03	M2 I	1.99	4.00
s04	M2 I	1.98	4.72
s05	M1 I	2.25	2.74

Distance, mass and age

(Ramírez-Alegría, Marín-Franch & Herrero, 2012, A&A 535, A8)

- Individual distances and extinctions were derived from intrinsic colors and magnitudes (Cox, 2000; Tokunaga, 2000) for the spectral types we determined
 - Individual distances are consistent with a cluster distance of 3.53±1.48 kpc
- Mass estimate using the CMD (Hidalgo et al. 2008):
 - Kroupa fit to the stellar population, after substraction using a control field.
 - Total mass estimated of $1.94 \cdot 10^4 M_{\odot}$ (lower limit)
- Cluster's age estimate:
 - RSG's population indicates an age between 6.5 and 10 Myr.
 - Earliest dwarf star in the cluster (O9V), sets an upper age limit of 10 Myr.
 - Masgomas-1 age is estimated in 8 Myr.

- Located in the same direction as Masgomas-1 (i.e. Scutum-Centaurus arm's base).
- Angular extension of 5x10 arcmin². Twice LIRIS FOV.

- C-C diagrams show the same extinction law for both field A and B
 Rieke extinction law
 - BUT... field B has an excess of red sources(stars in formation).
 - Methanol and ammonia masers reported for field B.
 This suggests that star formation started later in B or that extends more over time
 No evidence (for the moment) of induced SF

Conclusions

- As part of the beta version of our systematic search of massive, young and obscured galactic clusters, we have discovered Masgomas-1 and Masgomas-4.
- Masgomas-1 is an spectroscopically confirmed massive stellar cluster. It has a coexisting population of OB and RSG stars.
- The estimated distance of **3.5 kpc** place the cluster closer than the Scutum-Centaurus arm's base. Therefore, there is no association with the RSGC-complex.
- Age of 8 Myr, derived from the presence of RSGs and O9V star.
- Masgomas-4 has two nuclei located at a common distance of 1.9 kpc. At this distance, Masgomas-4 would have a size of 5.5 pc.
- Masgomas-4 presents evidence of on-going massive star formation and stars evolving to the ZAMS, but only in nuclei B. The reason for the difference is unclear
- Estimated total mass of $1.94\cdot10^4~M_\odot$ for Masgomas-1 and $2.19\cdot10^3~M_\odot$ for Masgomas-4.