Physical properties of Wolf-Rayet stars from near- to mid-IR diagnostics

Paul Crowther (Sheffield) Mike Barlow (UCL), Pat Morris (Herschel), Chris Rosslowe (Sheffield), Pierre Royer (Leuven)

Gamma Vel (WC8+07)

2

Why study (UV bright/IR faint) WR stars in infrared?

90% of Galactic Wolf-Rayet stars visually obscured due to interstellar dust, so IR diagnostics needed for spectral analysis (e.g. Crowther & Smith 1996)

Why study (UV bright/IR faint) WR stars in infrared?

90% of Galactic Wolf-Rayet stars visually obscured due to interstellar dust, so IR diagnostics needed for spectral analysis (e.g. Crowther & Smith 1996)

Mid- to far-IR provides fine-structure lines from which trace elements can be derived (e.g. Barlow+ 1988; Dessart+ 2000)

Why study (UV bright/IR faint) WR stars in infrared?

90% of Galactic Wolf-Rayet stars visually obscured due to interstellar dust, so IR diagnostics needed for spectral analysis (e.g. Crowther & Smith 1996)

- Mid- to far-IR provides fine-structure lines from which trace elements can be derived (e.g. Barlow+ 1988; Dessart+ 2000)
- Observed near- to far-IR spectral energy distribution helps with (unknown) radial dependence of wind clumping
 - (e.g. Nugis, Crowther & Willis 1998; Schnurr & Crowther 2008)

Wolf-Rayet stars

 Hydrogen envelope stripped via stellar winds or close binary evolution, revealing products of Hburning (He↑ N↑ in WN stars) or He-burning (C↑ O↑ in WC stars)

Wolf-Rayet stars

 Hydrogen envelope stripped via stellar winds or close binary evolution, revealing products of Hburning (He↑ N↑ in WN stars) or He-burning (C↑ O↑ in WC stars)

• Sequence: $O \Rightarrow BSG \Rightarrow LBV/RSG \Rightarrow WN \Rightarrow WC$

Phase	¹ Η	⁴He	¹² C	¹⁴ N	¹⁶ O	²⁰ Ne (²² Ne)
0	68%	30%	0.5%	0.1%	1%	0.1%
WN	0%	98%	0.1%	1.5%	0.1%	0.1%
WC	0%	70%	25%	0%	3%	0.1% (2%)

Spectroscopic Analysis

Complex radiative transfer in WR stars:

Intense radiation field (non-LTE);

- Extended atmospheres (spherical geometry);
- Effect of metal lines on atmospheric structure (line blanketing).

Tools from John Hillier (CMFGEN) & Wolf-Rainer Hamann (PoWR) account for these effects, providing physical & chemical parameters

Issues remain with driving the wind & clumping...

Inner Wolf-Rayet winds

Optical, near-IR & mid-IR permitted (recombination) lines formed at high densities within accelerating part of outflows: log (N_e/cm³) ~ 11-12

Inner Wolf-Rayet winds

HD 50896 (WN4b): Morris, Crowther & Houck (2004)

Clumping I

Plenty of evidence points to *clumped* WR winds:

- Electron scattering wings (Hillier 1991);
- Linear polarization
- (St Louis+ 1993; Kurosawa+ 2002)
- Blobs (Moffat+ 1988; Lepine+ 2000)

Clumping I

Plenty of evidence points to *clumped* WR winds:

Electron scattering wings (Hillier 1991);

Linear polarization
 (St Louis+ 1993; Kurosawa+ 2002)

Blobs (Moffat+ 1988; Lepine+ 2000)

For optically thin clumps, a volume filling factor *f*~0.1 reduces dM/dt by *f*^{0.5} albeit subject to complications due to porosity (optical depth effects: Oskinova+ 2007) & the radial clumping dependence (Runacres & Owocki 2002) August 17, 12

Schnurr & Crowther (2008, Potsdam workshop)

Clumping II

Outer Wolf-Rayet winds

Forbidden fine-structure lines are formed in the extreme outer wind, close to their critical densities N_c

$N_{AugCs}[NeII]/cm^3 \sim 5 \times 10^5$

$N_{C}[OIII]/cm^{3}\sim 500_{14}$

γ Vel: Gemini T-ReCS

High resolution (FWHM 0".45) long slit mid-IR spectroscopy of γ Vel, confirms spatial extension# of [NeII] & [SIV] lines.

If $R_*=3R_{\odot}$ then $R_c[NeII] \sim 7 \times 10^{-3}$ pc, (0.4" @ d=340 pc)

August 17, 12

Roche, Colling & Barlow (2012)

Ionic abundances

Barlow et al. (1988) provided a method of deriving ionic abundances, γ_{I} , from mid-IR fine structure lines in WR winds via $\gamma_{I} \propto I d^{2} v_{\infty}^{1.5} (dM/dt)^{-1.5}$ I=line intensity; d=distance; v_{∞} =terminal velocity; dM/dt=mass-loss rate

Ionic abundances

Barlow et al. (1988) provided a method of deriving ionic abundances, γ_I , from mid-IR fine structure lines in WR winds via

 $\gamma_{\rm I} \propto {\rm I} {\rm d}^2 {\rm v_{\infty}}^{1.5} {\rm (dM/dt)}^{-1.5}$

I=line intensity; d=distance; v_{∞} =terminal velocity; dM/dt=mass-loss rate

Most f.s. lines require spectroscopy from orbit

 <u>ISO/SWS</u>: [NeII-III] 12.8μm, 15.5μm (e.g. Dessart, Crowther+ 2000)

<u>Spitzer/IRS</u>: [NeII-III] 12.8μm, 15.5μm; [SIII-IV] 18.7μm, 10.5μm, [OIV] 25.9μm (e.g. Morris+ 2004; Crowther+ 2006)
 <u>Herschel/PACS</u>: [OIII] 88μm (Crowther+ in prep);

Neon problem?

- ²⁰Ne comprises 0.1% of atmosphere and remains constant until late evolutionary stages.
- ¹⁴N (produced via CNO cycle) transformed into
 ²²Ne at beginning of He-burning:
 ¹⁴N(α,γ)¹⁸F(e⁻, v_e)¹⁸O(α,γ)²²Ne
- From established reaction rates we expect >2% of ²²Ne in WC stars (for Z=Z_☉=2% by mass).
- Aitken et al. (1982), van der Hucht & Olnon (1985) & Barlow et al. (1988) quantified Ne in γ Vel (WC8+O) using mid-IR observations of [NeII] & [NeIII].
- Surprisingly Ne didn't appear to be enhanced..

Neon in WC stars: ISO

GTO (PI. van der Hucht) & GI (PI. Willis) SWS spectroscopy of 1 WN (Morris+ 2001) 4 WC stars (Dessart+ 2000), revealing X(Ne)~1% once dM/dt corrected for wind clumping.

Neon in WC stars: Spitzer

GTO (PI. Houck) & GI (PI. Crowther) IRS spectroscopy of 1 WN (Morris+ 2004), 2 WN/C, 6 WC (Crowther+ 2006) & 2 WO stars..

IRS spectroscopy

V_∞ from fine-structure lines, dM/dt, X(C), X(O), ionization, from atmospheric models. Distances from cluster membership (or sp type-calibration) August 17, 12

Spitzer/IRS WC results

Star	Subtype	Ion	V_{∞}	X(C)	X(O)	X(Ne)
WR4	WC5	Ne ²⁺	2250	53%	8%	0.5%
WR15	WC6	Ne ²⁺	2800	40%	8%	1.1%
WR23	WC6	Ne ²⁺	2200	49%	8%	1.1%
WR135	WC8	Ne ²⁺	1300	25%	8%	1.0%
WR103	WC9	Ne+	900	36%	2%	0.6%
Z=2% (Z _© =1.3%)	Meynet Maeder			40%	10%	2.3% (1.4%)

Rare subtype showing OVI emission lines (Barlow & Hummer 1982) thought to be final, brief WR stage (Kingsburgh et al. 1995). Two included in IRS program: WR102 (Sand 4), WR93b (Drew+ 2004)

WO stars

Rare subtype showing OVI emission lines (Barlow & Hummer 1982) thought to be final, brief WR stage (Kingsburgh et al. 1995). Two included in IRS program: WR102 (Sand 4), WR93b (Drew+ 2004)

Do they show evidence for highly processed reactions, i.e ${}^{16}O(\alpha,\gamma)^{20}Ne?$

Analysis of WR93b indicates this is not so: X(Ne)~2%, X(O)~7%, the latter a factor of two lower than recombination line studies.¹²

Herschel/PACS

Optical/near-IR carbon diagnostics in WC stars are plentiful, whereas oxygen abundances are more challenging:

 A Herschel/PACS programme to observe a sample of WC stars at 88.3μm ([OIII], 2nd order) & 177μm (continuum, 1st order) for (OT2, PI. Crowther) is underway;
 Our first observations, of γ Vel (WC8+O) were obtained in July 2012...

9.4" spaxels

Herschel/PACS

PACS spectroscopy of γ Vel indicates [OIII] 88.3µm is spatially extended# (recall low critical density of ~500 cm⁻³).

#If $R_*=3R_{\odot}$ then $R_c[OIII] \sim 0.03pc$ (~20" @ d=340 pc) 26

August 17, 12

Herschel/PACS

0

3000

-3000

PACS spectroscopy of γ Vel indicates [OIII] 88.3µm is spatially extended# (recall low critical density of ~500 cm⁻³).

Structure within line resembles [NeIII] in ISO/SWS spectroscopy.

#If $R_*=3R_{\odot}$ then $R_c[OIII]\sim0.03pc$ (~20" @ d=340 pc) 27

Oxygen in WC stars

O²⁺ is predicted to dominate the oxygen ionization balance in the extreme outer wind of y Vel, so we find a low value of O~1% (by mass) i.e. O/C ~ 0.02 (by number, for C/He~0.15, De Marco+ 2000)

Summary

- Permitted optical/near-IR/mid-IR wind lines produced in dense, inner WR wind (n_e~10¹¹ cm⁻³). Radial dependence of wind clumping from near to mid-infrared SED.
- Forbidden mid-IR/far-IR wind produced in outer (n_c~10⁵ cm⁻³ for [NeII] 12.8μm) or extreme outer (n_c~10² cm⁻³ for [OIII] 88μm), confirmed by Gemini/T-ReCS & Herschel/PACS

Summary

- Permitted optical/near-IR/mid-IR wind lines produced in dense, inner WR wind (n_e~10¹¹ cm⁻³). Radial dependence of wind clumping from near to mid-infrared SED.
- Forbidden mid-IR/far-IR wind produced in outer (n_c~10⁵ cm⁻³ for [NeII] 12.8μm) or extreme outer (n_c~10² cm⁻³ for [OIII] 88μm), confirmed by Gemini/T-ReCS & Herschel/PACS
- WC stars studied with Spitzer/IRS indicate X(Ne)~1% (Neon is close to expectations once clumped winds accounted for) while no evidence is found for ²⁰Ne in WO star.
- Herschel/PACS study in progress. So far: low oxygen abundance for γ Vel using [OIII] 88.3μm

Herschel/PACS @ 180µm

