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Gamma Gamma Vel Vel (WC8+O7)(WC8+O7)
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Why study (UV bright/IRWhy study (UV bright/IR
faint) WR stars in infrared?faint) WR stars in infrared?

90% of Galactic Wolf-Rayet stars visually
obscured due to interstellar dust, so IR
diagnostics needed for spectral analysis 
(e.g. Crowther & Smith 1996)
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Why study (UV bright/IRWhy study (UV bright/IR
faint) WR stars in infrared?faint) WR stars in infrared?

90% of Galactic Wolf-Rayet stars visually
obscured due to interstellar dust, so IR
diagnostics needed for spectral analysis 
(e.g. Crowther & Smith 1996)

Mid- to far-IR provides fine-structure lines from
which trace elements can be derived
(e.g. Barlow+ 1988; Dessart+ 2000)

Observed near- to far-IR spectral energy
distribution helps with (unknown) radial
dependence of wind clumping
(e.g. Nugis, Crowther & Willis 1998; Schnurr & Crowther 2008)
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Wolf-Wolf-Rayet Rayet starsstars
Hydrogen envelope stripped via stellar winds or

close binary evolution, revealing products of H-
burning (He↑ N↑ in WN stars) or He-burning
(C↑ O↑ in WC stars)
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Wolf-Wolf-Rayet Rayet starsstars
Hydrogen envelope stripped via stellar winds or

close binary evolution, revealing products of H-
burning (He↑ N↑ in WN stars) or He-burning
(C↑ O↑ in WC stars)

Sequence: O⇒ BSG ⇒ LBV/RSG ⇒ WN ⇒ WC

0.1%
(2%)

3%0%25%70%0%WC

0.1%0.1%1.5%0.1%98%0%WN

0.1%1%0.1%0.5%30%68%O

20Ne
(22Ne)

16O14N12C4He1HPhase
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Spectroscopic Analysis

    Complex radiative transfer in WR stars:
 Intense radiation field (non-LTE);
Extended atmospheres (spherical geometry);
Effect of metal lines on atmospheric structure

(line blanketing).

Tools from John Hillier (CMFGEN) & Wolf-
Rainer Hamann (PoWR) account for these
effects, providing physical & chemical
parameters
 Issues remain with driving the wind &

clumping…
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Inner Wolf-Rayet winds

Optical, near-IR &
mid-IR permitted
(recombination)

lines formed at high
densities within

accelerating part of
outflows:

 log (Ne/cm3) ~ 11-12

>10>101212

>10>101111
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Inner Wolf-Rayet winds
HD 50896 (WN4b): Morris, Crowther & Houck (2004)
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Clumping I
Plenty of evidence points to
clumped WR winds:

Electron scattering wings (Hillier
1991);

Linear polarization
(St Louis+ 1993; Kurosawa+ 2002)

Blobs (Moffat+ 1988; Lepine+ 2000)
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Clumping I

Schnurr & Crowther (2008, 
Potsdam workshop)

Plenty of evidence points to
clumped WR winds:

Electron scattering wings (Hillier
1991);

Linear polarization
(St Louis+ 1993; Kurosawa+ 2002)

Blobs (Moffat+ 1988; Lepine+ 2000)

For optically thin clumps, a
volume filling factor f~0.1
reduces dM/dt by f-0.5  albeit
subject to complications due to
porosity (optical depth effects:
Oskinova+ 2007) & the radial
clumping dependence (Runacres &

Owocki 2002)
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Clumping II

Schnurr & Crowther (2008, Potsdam workshop)



August 17, 12 14

Outer Wolf-Rayet winds
Forbidden fine-structure lines are formed in the
extreme outer wind, close to their critical densities NC

NC [NeII]/cm3~5x105 NC[OIII]/cm3~500
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γγ  VelVel: Gemini T-: Gemini T-ReCSReCS

High resolution
(FWHM 0”.45)
long slit mid-IR
spectroscopy of
γ Vel, confirms
spatial
extension# of
[NeII] & [SIV]
lines.

Roche, Colling & Barlow (2012)

# If R*=3R then
Rc[NeII]~7x10-3 pc,
(0.4” @ d=340 pc)
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Ionic abundancesIonic abundances
Barlow et al. (1988) provided a method of

deriving ionic abundances, γI, from mid-IR fine
structure lines in WR winds via

γI ∝ I d2 v∞1.5(dM/dt)-1.5

I=line intensity; d=distance; v∞=terminal
velocity; dM/dt=mass-loss rate
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Ionic abundancesIonic abundances
Barlow et al. (1988) provided a method of

deriving ionic abundances, γI, from mid-IR fine
structure lines in WR winds via

γI ∝ I d2 v∞1.5(dM/dt)-1.5

I=line intensity; d=distance; v∞=terminal
velocity; dM/dt=mass-loss rate

Most f.s. lines require spectroscopy from orbit
 ISO/SWS: [NeII-III] 12.8µm, 15.5µm (e.g. Dessart,

Crowther+ 2000)
Spitzer/IRS: [NeII-III] 12.8µm, 15.5µm; [SIII-IV] 18.7µm,

10.5µm, [OIV] 25.9µm (e.g. Morris+ 2004; Crowther+ 2006)
Herschel/PACS: [OIII] 88µm (Crowther+ in prep);
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Neon problem?Neon problem?
• 20Ne comprises 0.1% of atmosphere and remains

constant until late evolutionary stages.
• 14N (produced via CNO cycle) transformed into

22Ne at beginning of He-burning:
                   14                   14N(N(αα,,γγ))1818F(eF(e--,,ννee))1818O(O(αα,,γγ))2222NeNe
• From established reaction rates we expect >2%

of 22Ne in WC stars (for Z=Z=2% by mass).
• Aitken et al. (1982), van der Hucht & Olnon

(1985) & Barlow et al. (1988) quantified Ne in γ
Vel (WC8+O) using mid-IR observations of [NeII]
& [NeIII].

• Surprisingly Ne didn’t appear to be enhanced..
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Neon in WC stars: ISONeon in WC stars: ISO

WR135 ISO/SWS

GTO (PI. van der Hucht) & GI (PI. Willis) SWS
spectroscopy of 1 WN (Morris+ 2001) 4 WC stars
(Dessart+ 2000), revealing X(Ne)~1% once dM/dt
corrected for wind clumping.



August 17, 12 20

Neon in WC stars: SpitzerNeon in WC stars: Spitzer

WR135 ISO/SWSWR135 Spitzer/IRS

GTO (PI. Houck) & GI (PI. Crowther) IRS
spectroscopy of 1 WN (Morris+ 2004), 2 WN/C, 6
WC (Crowther+ 2006) & 2 WO stars..
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IRS spectroscopyIRS spectroscopy

   V∞ from fine-structure lines, dM/dt, X(C), X(O),
ionization, from atmospheric models. Distances
from cluster membership (or sp type-calibration)

[NeII]

[NeIII]
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Spitzer/IRS WC resultsSpitzer/IRS WC results

2.3%
(1.4%)

10%40%Meynet
Maeder

Z=2%
(Z=1.3%)

900

1300
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0.6%2%36%Ne+WC9WR103

1.0%8%25%Ne2+WC8WR135

1.1%8%49%Ne2+WC6WR23

1.1%8%40%Ne2+WC6WR15

0.5%8%53%Ne2+WC5WR4

X(Ne)X(O)X(C)IonSubtypeStar
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WO starsWO stars
Rare subtype showing OVI emission lines (Barlow &

Hummer 1982) thought to be final, brief WR stage
(Kingsburgh et al. 1995). Two included in IRS
program: WR102 (Sand 4), WR93b (Drew+ 2004)
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WO starsWO stars
Rare subtype showing OVI emission lines (Barlow &

Hummer 1982) thought to be final, brief WR stage
(Kingsburgh et al. 1995). Two included in IRS
program: WR102 (Sand 4), WR93b (Drew+ 2004)

Do they show evidence
for highly processed
reactions, i.e
16O(α,γ)20Ne?

Analysis of WR93b
indicates this is not so:
X(Ne)~2%, X(O)~7%,
the latter a factor of
two lower than
recombination line
studies.

[NeIII]          [OIV]
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Herschel/PACSHerschel/PACS

Optical/near-IR carbon
diagnostics in WC stars are
plentiful, whereas oxygen
abundances are more
challenging:
A Herschel/PACS programme

to observe a sample of WC
stars at 88.3µm ([OIII], 2nd
order) & 177µm (continuum,
1st order) for (OT2, PI.
Crowther) is underway;

 .Our first observations, of γ
Vel (WC8+O) were obtained
in July 2012…

9.4” spaxels
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Herschel/PACSHerschel/PACS

PACS spectroscopy of γ
Vel indicates [OIII]
88.3µm is spatially
extended# (recall low
critical density of ~500
cm-3).

#If R*=3R then Rc[OIII]~0.03pc
(~20” @ d=340 pc)
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Herschel/PACSHerschel/PACS

PACS spectroscopy of γ
Vel indicates [OIII]
88.3µm is spatially
extended# (recall low
critical density of ~500
cm-3).

Structure within line
resembles [NeIII] in
ISO/SWS spectroscopy.

#If R*=3R then Rc[OIII]~0.03pc
(~20” @ d=340 pc)
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Oxygen in WC starsOxygen in WC stars

O2+ is predicted to
dominate the
oxygen ionization
balance in the
extreme outer wind
of γ Vel, so we find
a low value of O~1%
(by mass) i.e.  O/C
~ 0.02 (by number,
for C/He~0.15, De
Marco+ 2000)
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SummarySummary
• Permitted optical/near-IR/mid-IR wind lines produced in

dense, inner WR wind (ne~1011 cm-3). Radial
dependence of wind clumping from near to mid-infrared
SED.

• Forbidden mid-IR/far-IR wind produced in outer
(nC~105 cm-3 for [NeII] 12.8µm) or extreme outer
(nC~102 cm-3 for [OIII] 88µm), confirmed by Gemini/T-
ReCS & Herschel/PACS
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SummarySummary
• Permitted optical/near-IR/mid-IR wind lines produced in

dense, inner WR wind (ne~1011 cm-3). Radial
dependence of wind clumping from near to mid-infrared
SED.

• Forbidden mid-IR/far-IR wind produced in outer
(nC~105 cm-3 for [NeII] 12.8µm) or extreme outer
(nC~102 cm-3 for [OIII] 88µm), confirmed by Gemini/T-
ReCS & Herschel/PACS

• WC stars studied with Spitzer/IRS indicate X(Ne)~1%
(Neon is close to expectations once clumped winds
accounted for) while no evidence is found for 20Ne in
WO star.

• Herschel/PACS study in progress. So far: low oxygen
abundance for γ Vel using [OIII] 88.3µm
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Herschel/PACS @ 180Herschel/PACS @ 180µµmm


