The Of/WN transition Region

Joachim M. Bestenlehner Götz Gräfener, Jorick S. Vink and Francisco Najarro and the VLT/Flames Tarantula Survey Team

23 August 2012

Funded by the Department of Culture, Arts and Leisure for Northern Ireland

and

Stores & The UK Science and Technology Facilities Council

- What is the transition Region?
- Goals
- Spectral Analysis
- First Results

In the context of the VLT/FLAMES Tarantula Survey our Goals are:

- What is going on in the O-WN transition region?
- Which role has the mass-loss rate for the evolution?

Goals

Mass loss close to the Eddington Limit:

Mass-loss dependency on Γ_e

Spectral Analysis

- Non-LTE code CMFGEN
 - time intensive
 - 3D grid of models (clumped and unclumped):
 - temperatures (T_{eff})
 - mass-loss rates (M)
 - helium abundances (Y)
 - fixed parameters:
 - luminosity (L)
 - terminal velocity (v_{∞}) and β
 - log *g*
 - \approx 2000 models

Spectral Analysis: Luminosity

Spectral Analysis: Luminosity

Joachim M. Bestenlehner, Götz Gräfener, Jorick S. Vink, Francisco Najarro and the VLT/Flames Tarantula Survey Team

Spectral Analysis: Luminosity

Fitting Non-LTE CMFGEN models to observations:

- optical (VLT/FLAMES) and near-IR (VLT/SINFONI)
- *T*_{eff} (optical diagnostics)
- *M* (near-IR and optical diagnostics)
- He (near-IR and optical diagnostics)

Spectral Analysis: mass-loss rate

Spectral Analysis: Helium abundance

Spectral Analysis: Temperature

He II (λ 4686) has a temperature jump in the optical \Rightarrow may lead to wrong *Y* or/and \dot{M}

Upper mass limit of massive Stars

Crowther et al. 2010: R136 contains several stars with $M_{\star} > 150 M_{\odot}$

Bestenlehner et al. 2011: VFTS 682 \sim 150 M_{\odot}

Results: Solitary Superstar VFTS 682

• $T_{eff} = 52.2 \pm 2.5 kK$

•
$$\log(\dot{M}/M_{\odot}yr^{-1}) = -4.13 \pm 0.2$$

• $\log(L/L_{\odot}) = 6.5 \pm 0.2$

Runaway?

• Formed at its current location?

Bestenlehner et al. 2011

VFTS 542 (O2 If*/WN5) preliminary result

HR-Diagram preliminary result

 $\dot{M} - \Gamma_e$ preliminary result

- Luminosity depends mainly on the near-IR photometry
- Near-IR spectroscopy solves contradictions in the optical
- $\dot{M} \Gamma_e$ relation regarding to the theoretical predictions by Gräfener et al. 2008 and Vink et al. 2011
- Possible "Kink" at the transition to Of/WN stars (Vink et al. 2011)
- Results are preliminary